ESTIMATES OF MEAN MONTHLY STREAMFLOW FOR SELECTED SITES IN THE MUSSELSHELL RIVER BASIN, MONTANA, BASE PERIOD WATER YEARS 1937-86 By Charles Parrett and Dave R. Johnson U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 89-4165 Prepared in cooperation with the LOWER MUSSELSHELL CONSERVATION DISTRICT and the MONTANA DEPARTMENT OF NATURAL RESOURCES AND CONSERVATION # DEPARTMENT OF THE INTERIOR MANUEL LUJAN, JR., Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director For additional information write to: District Chief U.S. Geological Survey 428 Federal Building 301 South Park, Drawer 10076 Helena, MT 59626-0076 Copies of this report can be purchased from: U.S. Geological Survey Books and Open-File Reports Section Federal Center, Bldg. 810 Box 25425 Denver, CO 80225-0425 #### CONTENTS | | Pa ge | |--|---------------------------------| | Abstract | 1
2
2
3 | | Common base period development | 6
7
7
9 | | Concurrent-measurement method | 10
11
14 | | Summary | 14
16 | | ILLUSTRATIONS | | | Figure 1. Map showing location of ungaged sites and streamflow-gaging stations used for estimation, correlation, or record extension. | 4 | | 2. Graphs showing lines for the curve-fitting technique and ordinary least-squares regression in the Mountain and Plains Regions | 12 | | TABLES | | | Table 1. Sites and methods used for estimation | 17
18 | | the Plains Region | 20 | | 5. Results of basin-characteristics regression analysis for the Plains Region | 24 | | Region | 2526 | | 8. Streamflow-gaging stations used in test of concurrent-measurement method in the Plains Region.9. Standard errors for three methods of estimation in the Mountain | 27 | | Region | 28
29 | | 11. Ungaged estimation sites with corresponding correlating gaged sites for the Mountain and Plains Regions | 30 | #### TABLES--Continued Pa ge | Table | 12. | Weights and standard errors for various combinations of methods | | |-------|-----|---|----| | | | of estimation for the Mountain Region | 31 | | | 13. | Weights and standard errors for various combinations of methods | | | | | of estimation for the Plains Region | 31 | #### CONVERSION FACTORS The following factors can be used to convert inch-pound units in this report to metric (International System) units. | Multiply inch-pound unit | <u>By</u> | To obtain metric unit | |---|---|---| | acre cubic foot per second foot foot per mile inch mile | 0.4047
0.028317
0.3048
0.1894
25.4
1.609 | hectare cubic meter per second meter meter per kilometer millimeter kilometer | | square mile | 2.59 | square kilometer | Temperature can be converted from degrees Fahrenheit (°F) to degrees Celsius (°C) by the equation: $$^{\circ}C = 5/9 (^{\circ}F - 32)$$ Sea level: In this report "sea level" refers to the National Geodetic Vertical $\overline{\text{Datum of 1929}}$ (NGVD of 1929)--A geodetic datum derived from a general adjustment of the first-order level nets of both the United States and Canada, formerly called "Sea Level Datum of 1929." <u>Water year:</u> The 12-month period from October 1 through September 30. A water year is identified by the calendar year in which it ends. ESTIMATES OF MEAN MONTHLY STREAMFLOW FOR SELECTED SITES IN THE MUSSELSHELL RIVER BASIN, MONTANA, BASE PERIOD WATER YEARS 1937-86 Вy #### Charles Parrett and Dave R. Johnson #### ABSTRACT Estimates of mean monthly and mean annual streamflow were made and are presented in tabular form for 56 selected sites in the Musselshell River basin and for 1 site, used for streamflow-correlation purposes, outside the basin. The study area was divided into a Mountain Region and a Plains Region and the methods of estimation used at ungaged sites were applied separately in the two regions. Of the 56 sites in the Musselshell River basin, 11 sites are in the Mountain Region and 45 are in the Plains Region. In the Mountain Region, the methods of estimation used were those previously developed for a similar study in the upper Missouri River basin. Each method of estimation developed was based on a common base period of record (water years 1937-86). The common base period ensured that mean monthly streamflow estimates at ungaged sites would be unbiased and representative of a consistent hydrologic period. The base period was developed using a mixed-station monthly flow record-extension procedure. Most of the streamflow-gaging stations used in the previous study were used in this study as potential base stations for the record-extension procedure for the Plains Region. Four methods were developed to estimate mean monthly streamflow at The first method was based on the regression relation ungaged sites. between mean monthly streamflow and various basin and climatic characteristics. The standard errors for this method ranged from 35 to 71 percent in the Mountain Region and from 98 to 157 percent in the Plains Region. The second method was similar to the first and was based on the regression relations between mean monthly streamflow and active-channel width. standard errors for this method ranged from 38 to 81 percent in the Mountain Region and from 71 to 98 percent in the Plains Region. The third method required measurements of streamflow at the ungaged sites and was based on correlation of the measured streamflow with concurrent daily mean streamflow at nearby gaged sites. The standard errors for this method ranged from 36 to 66 percent in the Mountain Region and from 109 to 321 percent in the Plains Region. The fourth method was used to estimate mean monthly streamflow at ungaged sites where more than one of the first three methods were used. For this method, mean monthly streamflows were estimated by weighting estimates from the individual methods in accordance with their variance and degree of independence. The standard error for the weighted-average-estimate method when all three individual estimates are weighted ranged from 25 to 55 percent in the Mountain Region and from 71 to 97 percent in the Plains Region. In the Mountain Region, the standard errors of the weighted-average-estimate method generally are smaller than the standard errors determined by the other three methods. In the Plains Region, the standard errors of the weighted-average-estimate method were generally comparable to those of the channel-width method. The most reliable estimates of mean monthly streamflow were for the 17 gaged sites. For the ungaged sites, estimates of mean monthly streamflow using the weighted-average-estimate method were considered to be more reliable than those determined by the other three methods. In general, estimates made at ungaged sites in the Mountain Region were substantially more reliable than estimates made at ungaged sites in the Plains Region. The large difference in reliability is attributed to the larger natural variability of streamflow and greater effect of irrigation on streamflow in the Plains Region. #### INTRODUCTION The Musselshell River drains about 8,000 square miles of the sparsely populated (less than 10,000 inhabitants) central Montana mountains and plains. The river is an important source of water for irrigation of about 70,000 acres of cropland. Although the water supply is marginally adequate in most years, serious shortages of water for irrigation are common. Shortages occur despite the presence of several State-managed water-storage projects and are reflective of the large natural variability in streamflows. To identify the locations and severity of the shortages and to formulate a management plan to equitably distribute available water, the Montana Department of Natural Resources and Conservation is attempting to develop a water-accounting The model will enable irrigation demands model of the Musselshell River basin. and streamflow availability to be calculated at several locations along the Musselshell River. Some important factors to be considered when calculating streamflow availability and irrigation demands are: irrigated acreage, municipal water demand, evapotranspiration, irrigation return flows, mainstem streamflow, tributary inflow. Although streamflow records generally are available at or near sites of interest on the Musselshell River, the periods of record at some sites are not concurrent. In addition, most of the tributaries are ungaged. Accordingly, the Lower Musselshell Conservation District and the Montana Department of Natural Resources and Conservation entered into a cooperative program with the U.S. Geological Survey to develop estimates of long-term mean monthly and mean annual streamflow at selected sites in the Musselshell River basin. #### Purpose and Scope The objective of the study was to estimate long-term mean monthly streamflow for each month at each identified site. This report presents those estimates for the selected sites, describes the methods used to make the estimates, and discusses the reliability of the estimates. Estimates were made for 56 sites in the Musselshell River basin, including 16 gaged sites. Mean monthly streamflow estimates also are presented for one gaged site (site 50) outside the Musselshell River basin that was used for streamflow correlation. To ensure that all estimates were representative of the same hydrologic conditions, a common base period of record-water years 1937-86-was used to determine mean monthly streamflow at all gaged sites used in the analysis. A streamflow record-extension procedure was used to extend the period of record
at short-record gaged sites. Four methods were developed to estimate mean monthly streamflow at the 40 selected ungaged sites. The first method, used to estimate mean monthly streamflow at 30 ungaged sites, was based on the regression relation between mean monthly streamflow and various basin and climatic characteristics. The second method was similar to the first and was based on the regression relation between mean monthly streamflow and channel width. This method was used to estimate mean monthly streamflow at 26 ungaged sites. The third method required 12 measurements of streamflow at the ungaged sites and was based on the correlation of measured streamflow with concurrent daily mean streamflow at nearby gaged sites. This method was used to estimate mean monthly streamflow at all 40 ungaged sites. The fourth method was used to estimate mean monthly streamflow at 30 ungaged sites where more than one of the first three methods were used. For this method, mean monthly streamflow was estimated by weighting estimates from the individual methods in accordance with the variance and degree of independence of the individual methods. Because estimates of mean annual streamflow are useful for many water management purposes, estimates of mean annual streamflow also were developed for this report by multiplying each mean monthly streamflow estimate by the number of days in the month, summing, and dividing by 365. Because the estimates of mean annual streamflow are derived from estimates of mean monthly streamflow, the reliability of only mean monthly streamflow is discussed. The 56 estimation sites in the Musselshell River basin and the l estimation site (site 50) outside the basin and the methods used to estimate mean monthly streamflow are identified in table 1. The estimates of mean monthly and mean annual streamflow for all selected sites are presented in table 2. #### Description of Study Area The Musselshell River is formed by the junction of the North and South Forks near Martinsdale. The headwaters of the North Fork Musselshell River are in the Little Belt Mountains. The headwaters of the South Fork Musselshell River are in the Castle and Crazy Mountains. The mountains are high and rugged, and receive as much as 30 inches of precipitation annually (U.S. Soil Conservation Service, 1981), mostly in the form of snow. Streams draining the mountains generally are perennial and have substantial baseflow, although irrigation withdrawals may decrease flows to near zero before the streams enter the North or South Fork. Downstream from Martinsdale, the Musselshell River traverses a broad, flat plains area where annual precipitation is about 13 inches (U.S. Soil Conservation Service, 1981). Tributary streams draining the plains are mostly intermittent and subject to large variations in streamflow as a result of sporadic, but intense, rainstorms and substantial irrigation withdrawals and return flows. Because the streams draining the mountains have substantially different streamflow characteristics from the streams draining the plains, the Musselshell River basin was divided into the Mountain Region and the Plains Region, and the estimation methods described in this report were applied separately to the two regions. The estimation methods for the Mountain Region were previously developed in a similar study done for mountain streams in the upper Missouri River basin (Parrett and others, 1989). Estimation methods developed for the Plains Region are based on data from 18 gaging stations in the study area and 139 gaging stations outside the study area. Figure 1.--Location of ungaged sites and streamflow-gaging stations Although many of the stations are well beyond the study-area boundaries, they were considered to be potentially useful for correlation purposes with ungaged estimation sites within the Musselshell River basin and thus were included in the analysis. Location of the streamflow-estimation sites, regional boundaries, and location of all gages used for this study are shown in figure 1. #### COMMON BASE PERIOD DEVELOPMENT Each streamflow estimation method described in this report utilizes streamflow information from selected gaging stations within and outside the study area. To ensure that streamflow estimates would be unbiased and representative of a consistent hydrologic period, a monthly flow record-extension procedure was used to extend all short-term records to a common base period (water years 1937-86). This mixed-station procedure, described by Alley and Burns (1983, p. 1272-1274), selects the best base station from among all available base stations to fill in each month of missing data at a short-record gage site. Thus, several different base stations may be used to fill in different months of missing data. The criterion for selection is to use the base station that results in the smallest standard error of prediction for that month. Only stations with streamflow record for a particular month and year were used to estimate missing flows at other sites for that month and year; previously estimated flows are not used to estimate any missing flows. The record-extension procedure differed between the Mountain and Plains Regions. For the Mountain Region, the record-extension procedure was the same used in the upper Missouri River basin study (Parrett and others, 1989). A total 154 gaging stations were used as potential base stations. For the Plains Region, the record-extension procedure included most of the same gaging stations as in the Mountain Region. Several additions to the data base resulted in 157 potential base stations (table 3). To permit inclusion of data from stations discontinued before 1937, the procedure was used to estimate all missing monthly streamflow data for water years 1906-86. After the records were extended, all data prior to 1937 were excluded from the data base. In addition to the capability of using more than one base station to extend a short-term record, the monthly record-extension procedure also has the option of using a cyclic or noncyclic equation to fill in missing record. If the cyclic option is selected, an extension equation is computed for each month using only concurrent streamflows for the month. If the noncyclic option is selected, a single extension equation is computed using all concurrent streamflows. For two stations with 5 years of concurrent monthly streamflows, for example, the cyclic correlations would be developed separately for each month and would be based on five concurrent flows for each month. The noncyclic correlation would be based on 60 concurrent monthly flows, but the same correlation would be used for all months. The smallest standard error criterion is also used to select the cyclic or noncyclic option each time a missing monthly streamflow is estimated. No base station was used to fill in missing record at another station unless the two stations had at least five concurrent monthly streamflows. The base stations with less than 5 years of record thus could be used only with the noncyclic option. Most streamflow record-extension procedures use ordinary least-squares regression equations to estimate individual missing values at short-term stations. Unfortunately, ordinary least-squares regression commonly results in extended records with smaller variances than the unextended records. Techniques other than ordinary least-squares regression which can be used to estimate missing values and which tend to preserve the variance of the unextended records include regression plus noise (Matalas and Jacobs, 1964; U.S. Army Corps of Engineers, 1971) and two alternatives to regression described by Hirsch (1982), which he refers to as MOVE.1 and MOVE.2 (Maintenance of Variance Extension, Types 1 and 2). The streamflow-record extension procedure described by Alley and Burns (1983) has the capability of using any of these extension techniques, including ordinary least-squares regression. For this study, the MOVE.1 curve-fitting technique was used to estimate missing values, because it is the simplest of the techniques that preserve variance of the unextended records. The MOVE.1 technique is analogous to ordinary least-squares regression, except that ordinary regression minimizes the squared vertical deviations of the response variable from the regression line, whereas the MOVE.1 technique minimizes the areas of the right triangles formed by the horizontal and vertical deviations from the regression line (Hirsch and Gilroy, 1984, p. 707). Because the record-extension procedure results in estimated flows that are perfectly correlated with concurrent flows at the base station(s) used to make the estimates, extended flow records might have substantially larger inter-station correlations than the actual flow records. Parrett and others (1989) tested whether the average inter-station correlations increased for 47 of the 154 gaged sites used for record extension in the upper Missouri River basin study and concluded that they did not. The same conclusion is believed to apply to the Plains Region in this study because the data base of 157 stations is almost identical to the 154 stations used for the Mountain Region and the upper Missouri River basin study. #### METHODS OF ESTIMATION #### Basin-Characteristics Method The first method used for estimating mean monthly streamflow at the ungaged estimation sites is based on a linear multiple-regression analysis that related mean monthly streamflow at selected gaged sites to various basin and climatic variables. This basin-characteristics method previously has been used in Montana to estimate monthly streamflow characteristics (Boner and Buswell, 1970; Parrett and Cartier, 1989; Parrett and others, 1989). For both the Mountain and Plains Regions, the following basin and climatic characteristics were available for each of the gaged sites and were used as potential explanatory variables in the regressions: - A drainage area, in square
miles; - P mean annual precipitation on the basin, in inches; - E mean basin elevation, in thousands of feet above sea level; - E6 percentage of basin above 6,000 feet elevation, plus 1; - F percentage of drainage area covered by forest, plus 1; - L main-channel length, in miles; - S main-channel slope, in feet per mile; - 124 precipitation intensity for a storm of 24 hours duration having a 2-year recurrence interval, in inches; and - TI mean basin minimum January temperature, in degrees Fahrenheit, plus 10. One or 10 was added to some basin and climatic characteristics to ensure that values of the characteristics were always greater than zero. For the Mountain Region, equations previously developed for the upper Missouri River basin (Parrett and others, 1989) were considered to be applicable. Those equations were based on data from 47 gaged sites, including 3 in the study area, that were considered to be most representative of streams draining the mountains. Basin and climatic characteristics that were used as explanatory variables were drainage area and mean annual precipitation. Regression equations for the Mountain Region, coefficients of determination, and standard errors are given in table 4. The coefficients of determination ranged from 0.70 to 0.89, and the standard errors, in log units, ranged from 0.15 (35 percent) to 0.28 (71 percent). In general, the larger the coefficient of determination and the smaller the standard error of estimate, the more reliable the estimating equation. The regression equations in table 4 were used to estimate mean monthly streamflow at seven ungaged sites. The regression equations were not used to estimate mean monthly streamflow for two ungaged sites—Trail Creek at mouth, near Checkerboard (site 91) and Spring Creek at mouth, near Checkerboard (site 93), because streamflow at those sites is substantially affected by upstream diversions and regulations. For the Plains Region, data from 31 gaged sites considered to be most representative of streams draining the plains were used in the basin-characteristics regression analysis. Because many streams draining the plains have some mean monthly streamflows close to or equal to zero, 1 cubic foot per second was added to all mean monthly streamflows prior to the regression analysis. All streamflow and basin and climatic characteristics data were then converted to logarithms, and regression equations of the following form were derived: $$\log (Q+1) = \log a + b1 \log B + b2 \log C + \dots bn \log N,$$ (1) where (Q+1) (response variable) is mean monthly streamflow, plus 1, in cubic feet per second; a is the multiple-regression constant; bl, b2, ... bn are the regression coefficients; and B, C, ... N are values of the significant basin or climatic characteristics (explanatory variables). The following nonlinear form of the regression equation results when antilogarithms of the terms are taken: $$(Q+1) = aB^{b1} C^{b2} \dots N^{bn}.$$ (2) A step-wise procedure (Minitab, Inc., 1986, p. 103-111) that added basin and climatic variables to the equation one at a time until all significant explanatory variables were included was used in this study. A variable was considered significant if the partial-F test statistic was equal to or greater than 5.0. A value of 5.0 for the partial-F test statistic corresponds to a significance level of about 97 percent for a regression analysis with 47 gaged sites (Mountain Region) and about 96 percent for a regression analysis with 31 gaged sites (Plains Region). The step-wise procedure also provided coefficients of determination and standard errors of estimate as measures of the regression reliability. Meaningful regression equations could be developed only for February through July. For October through January, August, and September, no equations were statistically significant. For months wherein regression equations were meaningful, drainage area was the most significant explanatory variable. For some months, precipitation and slope were statistically significant variables, but their exclusion from the regressions did not result in any substantial decrease in regression reliability. Therefore, drainage area was the only explanatory variable used to estimate mean monthly streamflow from February through July. Regression equations based on basin and climatic characteristics for the Plains Region, and their coefficients of determination and standard errors, are given in table 5. The coefficients of determination ranged from 0.33 to 0.50 and the standard errors, in log units, ranged from 0.36 (98 percent) to 0.48 (157 percent). For the Plains Region, the regression equations in table 5 were used to estimate mean monthly streamflow at 23 ungaged sites. Because the derived equations estimated (Q+1) rather than Q, 1 cubic foot per second had to be subtracted from each estimate. Where the subtraction resulted in an estimate of zero or less, zero was used as the final estimate. The method was not used at ungaged sites where the streamflow is affected by significant irrigation withdrawals or returns and those where streamflow is ephemeral. At ungaged sites where the method was used, drainage area was planimetered on U.S. Geological Survey topographic maps at a scale of 1:250,000. #### Channel-Width Method The second method used to estimate mean monthly streamflow at the ungaged sites was also based on a regression analysis. In this method, the regression equations used active-channel width (W_{AC}) as the only explanatory variable. This channel-width method was previously used to estimate monthly streamflow characteristics in western Montana (Parrett and Cartier, 1989) and in the upper Missouri River basin (Parrett and others, 1989). The active channel has been described by Osterkamp and Hedman (1977, p. 256) as "...a short-term geomorphic feature subject to change by prevailing discharges. The upper limit is defined by a break in the relatively steep bank slope of the active channel to a more gently/sloping surface beyond the channel edge. The break in slope normally coincides with the lower limit of permanent vegetation..." For the Mountain Region, equations previously developed for the upper Missouri River basin were considered to be applicable (Parrett and others, 1989). These equations were developed using the same 47 gaged sites in the mountains that were used for the basin-characteristics method. The equations for the Mountain Region, coefficients of determination, and standard errors are given in table 6. The coefficients of determination ranged from 0.64 to 0.87 and the standard errors, in log units, ranged from 0.16 (38 percent) to 0.31 (81 percent). The equations in table 6 were used to estimate mean monthly streamflow at seven ungaged sites. The equations were not used for the two ungaged sites (sites 91 and 93) that were most substantially affected by upstream diversion and regulation. For the Plains Region, mean monthly streamflow and measured active-channel width at the 31 gaged sites used in the basin-characteristics method were used for the channel-width analysis. As with the basin-characteristics method, I cubic foot per second was added to all mean monthly streamflows prior to the regression analysis. All streamflow and basin-characteristics data were then converted to logarithms, and regression equations of the following form were derived: $$\log (Q+1) = \log a + b \log W_{AC}, \tag{3}$$ where (Q+1) is mean monthly streamflow, plus 1, as previously defined; a is the regression constant; b is the regression coefficient; and W_{AC} is active-channel width, in feet. As before, the nonlinear form of equation 3 can be determined by taking antilogarithms as: $$(Q+1) = a W_{AC}^{b}. (4)$$ The channel-width regression equations for the Plains Region, coefficients of determination, and standard errors are given in table 7. The coefficients of determination ranged from 0.17 to 0.73 and the standard errors, in log units, ranged from 0.28 (71 percent) to 0.36 (98 percent). The equations in table 7 were used to estimate mean monthly streamflow at 19 ungaged sites in the Plains Region. Because the derived equations estimated (Q+1) rather than Q, 1 cubic foot per second had to be subtracted from each estimate. Where the subtraction resulted in a mean monthly streamflow estimate of zero or less, zero was used as the final estimate. The channel—width method was not used to estimate mean monthly streamflow at 12 ungaged estimation sites where the active—channel width could not be identified. #### Concurrent-Measurement Method The third method used to estimate mean monthly streamflow at ungaged sites was based on periodic measurements of streamflow at each ungaged site. The measured streamflows at each ungaged site were correlated with concurrent streamflows at a selected similar gaged site, and the relation between the streamflows at the two sites was used to transfer the long-term mean monthly streamflow at the gaged site to the ungaged site. This concurrent-measurement method was previously used to estimate monthly streamflow characteristics in western Montana (Parrett and Cartier, 1989) and in the upper Missouri River basin (Parrett and others, 1989). For this study, the concurrent-measurement method was based on 12 streamflow measurements at 39 ungaged sites and on 7 streamflow measurements at 1 ungaged site (site 97). Streamflow at site 97 was measured from April through September 1988 and the results were used for estimation; this site also was an estimation site in the upper Missouri River basin study (Parrett and others, 1989). At the other ungaged sites, streamflow was measured during October 1987 and March through September 1988 to provide a range from near-base streamflow to near-peak streamflow. For both the Mountain and the Plains Regions, the logarithms of the measured streamflows at each ungaged site were paired with logarithms of the concurrent streamflows at a selected gaged site, and
the equation of the best-fit line through the data pairs was determined from the MOVE.1 curve-fitting technique. Because zero flows are common in the Plains Region, 1 cubic foot per second was added to all streamflows before the data were converted to logarithms. Two examples of typical MOVE.1 and ordinary least-squares regression-line fits to measurement data at sites in the study area are shown in figure 2. The equations of the MOVE.1 lines were used to estimate long-term mean monthly streamflows at the ungaged sites from the long-term mean monthly streamflows at the gaged sites. The use of an equation to calculate mean monthly streamflow is equivalent to entering the mean monthly streamflow at the gaged line (x-axis) on the MOVE.1 line and reading the estimated mean monthly streamflow at the ungaged site off the y-axis as shown in figure 2. In the Plains Region, the long-term mean monthly streamflow at the gaged site plus 1 is entered on the MOVE.1 line, and 1 must be subtracted from the value read from the y-axis. In the Mountain Region, the estimated reliability of the concurrent-measurement method was considered to be the same as previously determined in the upper Missouri River basin study (Parrett and others, 1989). To estimate the reliability of the concurrent-measurement method in the Plains Region, 20 of the gaged sites used in the basin-characteristics and channel-width regression analyses were considered to be ungaged sites for which the concurrrent-measurement method was used to estimate mean monthly streamflow. No more than 20 gaged sites could be used because of the lack of suitable gaged sites with concurrent record that could be used for comparison. Thus, a suitable gaged site was selected for comparison with each of the 20 gaged sites (herein called pseudo-ungaged sites). Twelve concurrent daily mean streamflows, occurring in October and March through September during a randomly selected water year of concurrent record, were correlated using the MOVE.1 curvefitting technique. The pseudo-ungaged sites, their respective correlating gaged sites, and the year of record selected for the test are identified in table 8. The estimated mean monthly streamflows at each pseudo-ungaged site were then subtracted from the actual mean monthly streamflows determined from the extended streamflow record, and the standard deviations of the differences were calculated. The calculated standard deviations are equivalent to the standard errors of estimate determined by regression and thus are considered to be a comparable measure of reliability for the concurrent-measurement method. Standard errors for the concurrent-measurement method for the Mountain and Plains Regions are given in tables 9 and 10, respectively. Also shown for comparison are the standard errors for the basin-characteristics and channel-width estimation methods. For the concurrent-measurement method, standard errors, in log units, ranged from 0.15 (36 percent) to 0.26 (66 percent) in the Mountain Region and 0.39 (109 percent) to 0.68 (321 percent) in the Plains Region. The concurrent-measurement method was used to estimate mean monthly streamflow at 9 ungaged sites in the Mountain Region and at 31 ungaged sites in the Plains Region. These 40 ungaged estimation sites and their corresponding correlating gaged sites are identified in table 11. #### Weighted-Average-Estimate Method When different methods are available for estimating streamflow characteristics, it seems reasonable to assume that a weighted average of the individual estimates might provide a better answer than any of the individual estimates. The following equation can be used to weight three estimates: $$Z = a1 \cdot x1 + a2 \cdot x2 + a3 \cdot x3,$$ (5) Figure 2.--Lines for the curve-fitting technique and ordinary least-squares regression in the Mountain and Plains Regions. where Z is the weighted estimate of mean monthly streamflow; al, a2, and a3 are weights; and x_1 , x_2 , and x_3 are estimates of the mean monthly streamflow from the three individual estimation methods. The resulting weighted estimate Z will be unbiased and have minimum variance if the weights are computed from the following equations (E.J. Gilroy, U.S. Geological Survey, written commun., 1987): $$a1 = [C (SE_3^2 - S_{1,3}) - B (SE_3^2 - S_{2,3})]/(A C - B^2),$$ (6) $$a2 = [A (SE_3^2 - S_{2,3}) - B (SE_3^2 - S_{1,3})]/(A C - B^2),$$ (7) $$a3 = 1 - a1 - a2,$$ (8) where $$C = SE_2^2 + SE_3^2 - 2 S_{2,3};$$ SE_1 , SE_2 , SE_3 are the standard errors of the three different estimating methods; $$S_{i,j} = r_{i,j}$$ (SE_i • SE_j) and is the covariance of methods i and j; $r_{i,j}$ is the cross-correlation coefficient between the residuals from estimating methods i and j; $$A = SE_1^2 + SE_3^2 - 2 S_{1,3}$$; and $$B = SE_3^2 + S_{1,2} - S_{1,3} - S_{2,3}$$ The estimated standard error of the weighted estimate, SE_Z , is determined from the following equation: $$SE_{z} = [(a1 \cdot SE_{1})^{2} + (a2 \cdot SE_{2})^{2} + (1 - a1 - a2)^{2} SE_{3}^{2} + 2 a1 \cdot a2 \cdot S_{1,2} + 2 a1 (1 - a1 - a2) S_{1,3} + 2 a2 (1 - a1 - a2) S_{2,3}^{0.5},$$ $$(9)$$ where all terms are as previously defined. The preceding equations, and a similar set for the case where only two methods were weighted, were used to calculate weights and standard errors for all combinations of the three methods. In the Mountain Region, the weights and standard errors previously calculated for the upper Missouri River basin were used. In the Plains Region, the standard errors used in the calculations for the basin-characteristics and channel-width methods are based on data from 31 gaged sites, whereas the standard errors for the concurrent-measurement method are based on data from 20 gaged sites. The resultant weights and standard errors for the weighted-average estimates for each combination of individual estimates used for the Mountain and Plains Regions are given in tables 12 and 13, respectively. The standard errors, when using the three individual estimates, ranged from 25 to 55 percent in the Mountain Region and from 71 to 97 percent in the Plains Region. In the Mountain Region, the standard errors of the weighted-average-estimate method generally are smaller than the standard errors determined by the other three methods. In the Plains Region, the standard errors of the weighted-average-estimate method are generally comparable to those of the channel-width estimation method and smaller than those of the basin-characteristics and the concurrent-measurement methods. The weighted-averageestimate method was used to estimate mean monthly streamflow at 7 ungaged sites in the Mountain Region and at 23 ungaged sites in the Plains Region. #### RELIABILITY OF ESTIMATES The most reliable estimates of mean monthly streamflow are those for the 17 gaged sites identified in table 1. If the gaged record is assumed to be correct, the only errors in the estimates are those resulting from the streamflow-record-extension procedure. Results from a previous study in the upper Missouri River basin (Parrett and others, 1989) indicate that the standard errors of the record-extension procedure for determining mean monthly streamflow range from 4 to 9 percent when only 5 years of actual record are available, and from 1 to 3 percent when 35 years of actual record are available. For estimates of mean monthly streamflow made at ungaged sites in either the Mountain or the Plains Region, weighted-average estimates based on three methods are generally considered to be the most reliable. If only one estimation method was used, the most reliable estimates generally are determined by the concurrent-measurement method in the Mountain Region, and the channel-width method in the Plains Region. In general, mean monthly estimates made at ungaged sites in the Mountain Region are substantially more reliable than estimates made at ungaged sites in the Plains Region. The large difference in reliability is attributed to the larger natural variability of streamflow and greater effect of irrigation on streamflow in the Plains Region. #### SUMMARY Estimates of mean monthly and mean annual streamflow were made at 56 selected sites in the Musselshell River basin in central Montana and at 1 site, used for streamflow correlation purposes, outside the basin. Of these sites, 17 have gaged record, and 40 are ungaged. The study area was divided into a Mountain Region and a Plains Region, and the methods used to estimate streamflow at the ungaged sites were applied separately in the two regions. In the Mountain Region, methods previously developed for a similar study in the mountainous area of the upper Missouri River basin were used. Each method developed for estimating mean monthly streamflow was based on a common base period of record (water years 1937-86). The common base period ensured that estimates at ungaged sites would be unbiased and representative of a consistent hydrologic period. The base period was developed using a mixed-station monthly streamflow-extension procedure. Most of the same gaging stations previously used for the upper Missouri River basin study were used as potential base stations for the record-extension procedure for the Plains Region in this study. Four methods were developed for estimating mean monthly streamflow at ungaged sites. The basin-characteristics method was used to estimate mean monthly streamflow at 7 ungaged sites in the Mountain Region and 23 ungaged sites in the Plains Region. The equations developed for the Mountain Region used drainage area and mean annual precipitation as explanatory variables, whereas only drainage area was used in equations developed for the Plains Region. For the Plains Region, meaning-ful regression equations could be developed only for February through July. The standard errors, in log units, ranged from 0.15 (35 percent) to 0.28 (71 percent) in the Mountain Region and from 0.36 (98 percent) to 0.48 (157 percent) in the
Plains Region. The channel-width method was used to estimate mean monthly streamflow at 7 ungaged sites in the Mountain Region and at 19 ungaged sites in the Plains Region. The equations used active-channel width as the explanatory variable. Standard errors, in log units, ranged from 0.16 (38 percent) to 0.31 (81 percent) in the Mountain Region and from 0.28 (71 percent) to 0.36 (98 percent) in the Plains Region. The concurrent-measurement method was used to estimate mean monthly streamflow at 9 ungaged sites in the Mountain Region and at 31 ungaged sites in the Plains Region. All correlations were based on 12 streamflow measurements except for one, which was based on 7 streamflow measurements. Standard errors, in log units, ranged from 0.15 (36 percent) to 0.26 (66 percent) in the Mountain Region and from 0.39 (109 percent) to 0.68 (321 percent) in the Plains Region. The weighted-average estimate method was used to estimate mean monthly streamflow at 7 ungaged sites in the Mountain Region and at 23 ungaged sites in the Plains Region. The weighted-average estimates were developed by weighting estimates from two or more of the individual estimation methods in accordance with the variance and degree of independence of the individual estimates. The standard errors, when using the three individual estimates, ranged from 25 to 55 percent in the Mountain Region and from 71 percent to 97 percent in the Plains Region. Standard errors for weighted-average estimates are substantially smaller in the Mountain Region than in the Plains Region. In the Mountain Region, the standard errors of the weighted-average estimate method generally are smaller than the standard errors of the other three methods. In the Plains Region, the standard errors of the weighted-average-estimate method are generally comparable to those of the channel-width method. The most reliable estimates of mean monthly streamflow are for the 17 gaged sites. For the ungaged sites, estimates of mean monthly streamflow using the weighted-average-estimate method are considered to be more reliable than those determined by the other three methods. In general, estimates made at ungaged sites in the Mountain Region are substantially more reliable than estimates made at ungaged sites in the Plains Region. The large difference in reliability is attributed to the larger natural variability of streamflow and greater effect of irrigation on streamflow in the Plains Region. Also, of the first three estimation methods, the concurrent-measurement method was the most reliable in the Mountain Region, whereas the channel-width method was most reliable in the Plains Region. #### REFERENCES CITED - Alley, W.M., and Burns, A.W., 1983, Mixed-station extension of monthly streamflow records: Journal of Hydraulic Engineering, v. 109, no. 10, p. 1272-1284. - Boner, F.C., and Buswell, G.W., 1970, A proposed streamflow data program for Montana: U.S. Geological Survey Open-File Report 70-33, 96 p. - Hirsch, R.M., 1982, A comparison of four streamflow record extension techniques: Water Resources Research, v. 18, no. 4, p. 1081-1088. - Hirsch, R.M., and Gilroy, E.J., 1984, Methods of fitting a straight line to data--Examples in water resources: Water Resources Bulletin, v. 20, no. 5, p. 705-711. - Matalas, N.C., and Jacobs, B.A., 1964, A correlation procedure for augmenting hydrologic data: U.S. Geological Survey Professional Paper 434-E, 7 p. - Minitab, Inc., 1986, Minitab reference manual, release 5: State College, Pa., 266 p. - Osterkamp, W.R., and Hedman, E.R., 1977, Variation of width and discharge for natural high-gradient stream channels: Water Resources Research, v. 13, no. 2, p. 256-258. - Parrett, Charles, and Cartier, K.D., 1989, Methods for estimating monthly streamflow characteristics at ungaged sites in western Montana: U.S. Geological Survey Open-File Report 89-40, 52 p. - Parrett, Charles, Johnson, D.R., and Hull, J.A., 1989, Estimates of streamflow characteristics at selected sites in the upper Missouri River basin, Montana, base period water years 1937-86: U.S. Geological Survey Water-Resources Investigations Report 89-4082, 103 p. - U.S. Army Corps of Engineers, 1971, HEC-4 monthly streamflow simulation: Hydrologic Engineering Center, $113~\rm p$. - U.S. Soil Conservation Service, 1981, Average annual precipitation, Montana, based on 1941-70 base period: Bozeman, Mont., 13 p. #### [--, -, not applicable] Method for estimating mean monthly streamflow at ungaged sites | Site
No. | Stream name | Streamflow-
gaging
station
No. | Basin
charac-
teris-
tics | | ure- | Weighted
average
estimate | |---------------------------------|--|--|------------------------------------|-----------------------|-----------------------|---------------------------------| | 50
88
89
90
91 | Sheep Creek near White Sulphur Springs ¹ North Fork Musselshell River near Delpine ¹ Checkerboard Creek at Checkerboard ¹ Sourdough Creek at mouth, near Checkerboard ¹ Trail Creek at mouth, near Checkerboard ¹ | 06077000
06115500

 | -
X
X | -
X
X | -
X
X
X | -
X
X | | 92
93
94
95
96 | Flagstaff Creek at mouth, near Checkerboard ¹ Spring Creek at mouth, near Checkerboard ¹ Whetstone Creek at mouth, near Checkerboard ¹ Cooper Creek at mouth, near Checkerboard ¹ Mud Creek at mouth, near Martinsdale |

 | x
-
x
x
x | X
-
X
X
X | X
X
X
X | x
-
x
x
x | | 97
98
99
100
101 | Alabaugh Creek at mouth, near Lennep ¹ Cottonwood Creek at mouth, near Martinsdale ¹ South Fork Musselshell River above Martinsdale ¹ Daisy Dean Creek at mouth, near Twodot Willis Coulee at mouth, near Twodot |
06118500
 | х
х
х
х | X
X
-
X
X | X
X
X
X | X
X
-
X
X | | 102
103
104
105
106 | Miller Creek near mouth, near Twodot
Haymaker Creek at mouth, at Twodot
Big Elk Creek at Twodot
Mexican John Creek at mouth, near Harlowton
Hopley Creek near mouth, near Harlowton | 06120000
 | X
X
X
X | X
X
-
X
X | X
X
-
X
X | X
X
-
X
X | | 107
108
109
110
111 | Musselshell River at Harlowton
Antelope Creek above Alkali Creek, near Harlowton
American Fork near Harlowton
Lebo Creek near Harlowton
American Fork below Lebo Creek, near Harlowton | 06120500

06121000
06121500
06122000 | x
-
- | X
-
- | -
X
-
- | -
X
-
- | | 112
113
114
115
117 | Timber Creek at mouth, near Harlowton
Mud Creek near mouth, near Shawmut
Fish Creek near mouth, near Ryegate
Musselshell River near Ryegate
Careless Creek at Wallum |

06123500
06125500 | X
X
X
-
- | X
X
X
- | X
X
X
- | X
X
X
- | | 118
119
120
121
122 | Careless Creek at mouth, near Ryegate
Ninemile Coulee at mouth, near Cushman
Fivemile Creek at mouth, near Lavina
Big Coulee near Lavina
Painted Robe Creek at mouth, near Lavina |

06125700 | -
-
-
x | -
-
-
- | X
X
X
-
X | -
-
-
X | | 123
124
125
126
127 | Dean Creek near mouth, near Lavina
Stanley Creek at mouth, near Roundup
Goulding Creek at mouth, near Roundup
Currant Creek near Roundup
Horsethief Creek at mouth, near Roundup |

 | -
-
x
x | -
-
X
X | X
X
X
X | -
-
X
X | | 128
129
130
131
132 | Halfbreed Creek near Klein
Musselshell River near Roundup
Willow Creek at mouth, near Roundup
Parrot Creek at mouth, near Roundup
Fattig Creek near mouth, near Delphia | 06126470
06126500

 | -
X
X
X | -
X
- | -
X
X
X | -
X
X
X | | 133
134
135
136
137 | Musselshell River at Musselshell
Hawk Creek at Musselshell
McLean Coulee at mouth, near Musselshell
Carpenter Creek at mouth, near Musselshell
Lost Horse Creek near mouth, near Melstone | 06127500

 | -
X
X
-
- | х
х
-
- | -
Х
Х
Х | -
X
X
-
- | | 138
139
140
142
143 | Home Creek near mouth, near Melstone
Rattlesnake Creek at mouth, near Mosby
North Willow Creek at mouth, near Mosby
Box Elder Creek near Winnett
McDonald Creek at Winnett |

06129000
06129500 | X
X
X
- | -
X
X
-
- | X
X
X
- | X
X
X
- | | 144
145 | Flatwillow Creek at mouth, near Mosby
Musselshell River at Mosby | 06130500 | <u>x</u> | <u>x</u> | <u>x</u> | X
- | | Tota | Ls | 17 | 30 | 26 | 40 | 30 | $^{^{\}mathrm{l}}$ Mountain Region stream. Table 2.--Estimated mean monthly and mean annual streamflow [Mean monthly streamflow for specified month and mean annual streamflow, in cubic feet per second. Weighted-average-estimate method used unless otherwise indicated] | Site
No. | Stream name | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | |---------------------------------|---|---------------------------|---------------------------|---------------------------|---------------------------|--------------------------|---------------------------|----------------------------| | 50
88
89
90
91 | Sheep Creek near White Sulphur Springs
North Fork Musselshell River near Delpine
Checkerboard Creek at Checkerboard
Sourdough Creek at mouth, near
Checkerboard
Trail Creek at mouth, near Checkerboard | 16
7
4
.4 | 13
7
4
•4
•5 | 11
6
3
.3 | 9
6
3
.3 | 9
6
3
.3 | 9
9
6
.5
.6 | 21
19
14
1 | | 92
93
94
95
96 | Flagstaff Creek at mouth, near Checkerboard
Spring Creek at mouth, near Checkerboard ¹
Whetstone Creek at mouth, near Checkerboard
Cooper Creek at mouth, near Checkerboard
Mud Creek at mouth, near Martinsdale | 2
3
•5
•3
•6 | 2
2
.5
.3
.5 | 2
2
•4
•2
•4 | 2
1
.3
.2
.5 | 2
2
.3
.2 | 2
3
.4
.2
2 | 5
12
2
1 | | 97
98
99
100
101 | Alabaugh Creek at mouth, near Lennep
Cottonwood Creek at mouth, near Martinsdale
South Fork Musselshell River above Martinsdale
Daisy Dean Creek at mouth, near Twodot
Willis Coulee at mouth, near Twodot | 4
15
31
.4
.4 | 3
14
28
•4
•4 | 3
10
22
.4
.4 | 2
8
18
.4
.4 | 2
8
21
•2
•4 | 2
21
37
.9
.8 | 11
73
110
.5 | | 102
103
104
105
106 | Miller Creek near mouth, near Twodot
Haymaker Creek at mouth, at Twodot
Big Elk Creek at Twodot
Mexican John Creek at mouth, near Harlowton
Hopley Creek near mouth, near Harlowton | 1
.5
8
.9 | 1
•4
9
•9
•8 | 1
7
.8
.8 | 1
.4
5
.8
.7 | 2
.5
6
2
1 | 4
1
7
3
3 | 4.6
15
2
2 | | 107
108
109
110
111 | Musselshell River at Harlowton
Antelope Creek above Alkali Creek, near Harlowton
American Fork near Harlowton
Lebo Creek near Harlowton
American Fork below Lebo Creek, near Harlowton | 76
.4
3
16
16 | 81
.3
2
18
15 | 72
.3
15
16 | 61
.3
2
12
15 | 70
2
12
19 | 110
1
2
24
24 | 170
.4
4
15
23 | | 112
113
114
115
117 | Timber Creek at mouth, near Harlowton
Mud Creek near mouth, near Shawmut
Fish Creek near mouth, near Ryegate
Musselshell River near Ryegate
Careless Creek at Wallum | .6
.8
2
57
3 | .6
.7
.3
63
2 | .5
.6
3
80
3 | .6
.7
2
59
2 | .9
1
4
76
5 | 2
2
16
150
26 | 1
1
25
150
7 | | 118
119
120
121
122 | Careless Creek at mouth, near Ryegate ^{1,2} Ninemile Coulee at mouth, near Cushman ¹ Fivemile Creek at mouth, near Lavina ¹ Big Coulee near Lavina Painted Robe Creek at mouth, near Lavina | 3
0
2
.8 | 2
.2
0
3
.9 | 3
.1
0
3
.7 | 2
.1
0
2
.6 | 5
.1
0
3
6 | 26
0
10
11 | 7
0
7
5 | | 123
124
125
126
127 | Dean Creek near mouth, near Lavina ¹ Stanley Creek at mouth, near Roundup ¹ Goulding Creek at mouth, near Roundup ¹ Currant Creek near Roundup Horsethief Creek at mouth, near Roundup | 0
0
.1
2 | 0
0
.1
3 | 0
0
.1
2 | 0
0
.1
2 | 0
0
.1
6 | .1
0
.2
12
3 | .1
0
.2
13 | | 128
129
130
131
132 | Halfbreed Creek near Klein
Musselshell River near Roundup
Willow Creek at mouth, near Roundup
Parrot Creek at mouth, near Roundup
Fattig Creek near mouth, near Delphia | 1
73
.7
.3
.4 | 1
74
.9
.3
.5 | 1
71
.8
.3
.5 | .9
.8
.2
.2 | 1
110
.7
3
4 | 1
220
3
5
8 | 1
200
2
3
4 | | 133
134
135
136
137 | Musselshell River at Musselshell
Hawk Creek at Musselshell
McLean Coulee at mouth, near Musselshell
Carpenter Creek at mouth, near Musselshell ¹
Lost Horse Creek near mouth, near Melstone ¹ | 76
•5
•7
•2 | 74
.5
.6
.3 | 73
.5
.5
.2 | 72
.5
.6
.2 | .5 | 260
2
2
.4
.1 | 210
1
1
.4 | | 138
139
140
142
143 | Home Creek near mouth, near Melstone
Rattlesnake Creek at mouth, near Mosby
North Willow Creek at mouth, near Mosby
Box Elder Creek near Winnett
McDonald Creek at Winnett | 0
3
2
0
3 | 0
3
2
•2 | 0
2
2
2
.2 | 0
2
2
.5
4 | 0
13
9
14
6 | 0
31
21
56
8 | 13
9
12
10 | | 144
145 | Flatwillow Creek at mouth, near Mosby
Musselshell River at Mosby | 4
82 | 6
87 | 82
82 | 4
86 | 21
220 | 63
550 | 30
350 | ¹Estimates made using concurrent-measurement method only. $^{^2}$ Estimates for Careless Creek at mouth, near Ryegate are for natural flow only and do not include reservoir releases. Table 2.--Estimated mean monthly and mean annual streamflow--Continued | Site
No. | Stream name | May | June | July | Aug. | Sept. | Mean
annual | |---------------------------------|---|------------------------------|------------------------------|----------------------------|-----------------------------|----------------------------|------------------------------| | 50
88
89
90
91 | Sheep Creek near White Sulphur Springs
North Fork Musselshell River near Delpine
Checkerboard Creek at Checkerboard
Sourdough Creek at mouth, near Checkerboard
Trail Creek at mouth, near Checkerboard | 96
26
27
3
1 | 110
29
32
4
3 | 43
15
12
•9
•8 | 23
9
5
•5
•4 | 18
8
4
•4
•4 | 32
12
6
3 | | 92
93
94
95
96 | Flagstaff Creek at mouth, near Checkerboard
Spring Creek at mouth, near Checkerboard ¹
Whetstone Creek at mouth, near Checkerboard
Cooper Creek at mouth, near Checkerboard
Mud Creek at mouth, near Martinsdale | 13
41
5
3 | 18
45
6
4
2 | 5
8
1
.8 | 2
2
.5
.3
.6 | 2
2
.4
.3
.9 | 4
10
1
.9 | | 97
98
99
100
101 | Alabaugh Creek at mouth, near Lennep
Cottonwood Creek at mouth, near Martinsdale
South Fork Musselshell River above Martinsdale
Daisy Dean Creek at mouth, near Twodot
Willis Coulee at mouth, near Twodot | 47
290
320
.6
.7 | 54
350
340
.6
.8 | 15
58
78
.3 | 6
13
27
.3
.4 | 5
10
25
•4
•5 | 13
73
88
•5
•5 | | 102
103
104
105
106 | Miller Creek near mouth, near Twodot
Haymaker Creek at mouth, at Twodot
Big Elk Creek at Twodot
Mexican John Creek at mouth, near Harlowton
Hopley Creek near mouth, near Harlowton | 6
43
3
2 | 7
62
3
3 | 3
15
2
1 | 1
.4
.9
.9 | 1
.6
6
1
.9 | 3
16
2
1 | | 107
108
109
110
111 | Musselshell River at Harlowton
Antelope Creek above Alkali Creek, near Harlowton
American Fork near Harlowton
Lebo Creek near Harlowton
American Fork below Lebo Creek, near Harlowton | 390
.5
7
26
77 | 510
.5
56
28
120 | 170
.3
5
9
31 | .3
1
13
13 | 70
.4
.9
17
12 | 160
.4
7
17
32 | | 112
113
114
115
117 | Timber Creek at mouth, near Harlowton
Mud Creek near mouth, near Shawmut
Fish Creek near mouth, near Ryegate
Musselshell River near Ryegate
Careless Creek at Wallum | 1
2
44
410
9 | 2
2
97
650
20 | 1
1
6
250
9 | .6
.7
120
3 | .8
1
2
86
3 | 1
1
17
180
8 | | 118
119
120
121
122 | Careless Creek at mouth, near Ryegate ^{1,2}
Ninemile Coulee at mouth, near Cushman
Fivemile Creek at mouth, near Lavina ¹
Big Coulee near Lavina
Painted Robe Creek at mouth, near Lavina | 9
0
11
8 | 20
.6
0
20
10 | 9
0.3
7
5 | 3
0
4
1 | 3
0
4
.9 | 8
0
6
4 | | 123
124
125
126
127 | Dean Creek near mouth, near Lavina ¹
Stanley Creek at mouth, near Roundup ¹
Goulding Creek at mouth, near Roundup ¹
Currant Creek near Roundup
Horsethief Creek at mouth, near Roundup | .1
0
.3
17
1 | .1
0
.3
17
1 | .1
0
.3
6 | 0
0
.1
3 | 0
0
.2
3 | 0
0
.2
7
.8 | | 128
129
130
131
132 | Halfbreed Creek near Klein
Musselshell River near Roundup
Willow Creek at mouth, near Roundup
Parrot Creek at mouth, near Roundup
Fattig Creek near mouth, near Delphia | 1
440
4
4
6 | 1
720
3
5
8 | 1
290
1
3
4 | .9
170
.7
.4
.7 | 1
120
.7
.4
.8 | 1
210
2
2
2
3 | | 133
134
135
136
137 | Musselshell River at Musselshell
Hawk Creek at Musselshell
McLean Coulee at mouth, near Musselshell
Carpenter Creek at mouth, near Musselshell ¹
Lost Horse Creek near mouth, near Melstone ¹ | 430
1
2
.4
.1 | 690
1
2
.6
.2 | 270
.6
1
.4 | 140
•5
•6
•3
•1 | .6
.8
.3 | 210
.8
1
.3 | | 138
139
140
142
143 | Home Creek near mouth, near Melstone
Rattlesnake Creek at mouth, near Mosby
North Willow Creek at mouth, near Mosby
Box Elder Creek near Winnett
McDonald Creek at Winnett | 21
14
34
38 | .3
35
21
50
47 | .2
14
9
37
30 | 0
4
3
1
3 | 0
4
3
2
8 | .1
12
8
17
13 | | 144
145 | Flatwillow Creek at mouth, near Mosby
Musselshell River at Mosby | 61
630 | 81
1000 | 24
350 | 6
120 | 6
130 | 26
310 | | Site
No. | | Streamflow-
gaging
station No. | Period of record (since water year 1906) | |----------------------------|--|--
--| | 1 | Red Rock River near Kennedy Ranch,
near Lakeview | 06011000 | 1936-67 | | 2 | Red Rock River below Lima
Reservoir, near Monida | 06012500 | 1911-19;1925-69;1974-82;1985-86 | | 3 | Big Sheep Creek below Muddy Creek, near Dell | 06013500 | 1936;1946-53;1961-80 | | 4
5 | Red Rock River at Red Rock
Horse Prairie Creek near Grant | 06014500
06015000 | 1974-83
1928;1932;1935-36;1946-53 | | 6
7
8
9
10 | Beaverhead River near Grant
Grasshopper Creek near Dillon
Beaverhead River at Barretts
Blacktail Deer Creek near Dillon
Beaverhead River near Dillon | 06015400
06015500
06016000
06017500
06018000 | 1963-84
1921-33;1946-58;1960-61
1908-86
1946-66
1951-52;1963-84 | | 11 | Ruby River above reservoir,
near Alder | 06019500 | 1938-86 | | 12
13
14
15 | Ruby River near Twin Bridges
Big Hole River near Jackson
Trail Creek near Wisdom
Wise River near Wise River | 06023000
06023500
06024500
06024590 | 1940-43;1946-65;1979-81
1948-54
1948-54;1967-72
1972-85 | | 16
17
18
19 | Big Hole River near Melrose
Jefferson River near Twin Bridges
Whitetail Creek near Whitehall
Boulder River above Rock Creek,
near Basin | 06025500
06026500
06029000
06030500 | 1924-86
1940-43;1958-72
1950-68
1936;1946-58 | | 20 | Boulder River near Boulder | 06033000 | 1929-73;1985-86 | | 21
22
23
24
25 | Jefferson River at Sappington
Willow Creek near Harrison
Norwegian Creek near Harrison
Willow Creek near Willow Creek
Jefferson River near Three Forks | 06034500
06035000
06035500
06036500
06036650 | 1938-70
1938-85
1938-43;1946-51
1919-33;1946-57
1978-86 | | 26 | Madison River near West
Yellowstone | 06037500 | 1913-73;1983-86 | | 27 | Madison River below Hebgen Lake,
near Grayling | 06038500 | 1939-86 | | 28
29
30 | Madison River near Cameron Jack Creek near Ennis Madison River below Ennis Lake, near McAllister | 06040000
06040300
06041000 | 1952-63;1968-71
1973-85
1939-86 | | 31
32 | Madison River near Three Forks
Gallatin River near Gallatin
Gateway | 06042500
06043500 | 1929-32;1942-50
1930-82;1985-86 | | 33
34
35 | East Gallatin River at Bozeman
Bridger Creek near Bozeman
Hyalite Creek at Hyalite Ranger
Station, near Bozeman | 06048000
06048500
06050000 | 1939-61
1946-72
1934-86 | | 36
37
38
39
40 | Gallatin River near Logan
Sixteenmile Creek near Ringling
Missouri River near Toston
Crow Creek near Radersburg
Prickly Pear Creek near Clancy | 06052500
06053000
06054500
06055500
06061500 | 1906;1928-86
1950-55
1911-17;1941-86
1919-29;1966-72
1908-16;1921-33;1946-70;1979-86 | | 41
42
43 | Tenmile Creek near Rimini
Tenmile Creek near Helena
Missouri River below Holter | 06062500
06063000
06066500 | 1915-86
1908-54
1946-86 | | 44 | Dam, near Wolf Creek
Little Prickly Pear Creek near | 06068500 | 1913-33 | | 45 | Marysville
Little Prickly Pear Creek near
Canyon Creek | 06071000 | 1909-25 | | 46
47
48 | Dearborn River near Clemons
Dearborn River near Craig
Smith River near White Sulphur
Springs | 06073000
06073500
06074500 | 1921-23;1929-53
1946-69
1923-31;1934-36 | | 49
50 | Smith River near Fort Logan
Sheep Creek near White Sulphur
Springs | 06076690
06077000 | 1978-86
1941-73 | ## Table 3.--Streamflow-gaging stations used for record-extension analysis of the Plains Region--Continued | Site
No. | | Streamflow-
gaging
station No. | Period of record (since water year 1906) | |-------------|---|--------------------------------------|--| | 51 | Smith River near Eden | 06077500 | 1951-70 | | 52
53 | Missouri River near Ulm
North Fork Sun River near Augusta | 06078200
06078500 | 1957-86
1911-12;1946-68 | | 54 | Sun River near Augusta | 06080000 | 1906-40 | | 55 | Sun River below diversion dam,
near Augusta | 06080900 | 1968-81 | | 56
57 | Willow Creek near Augusta
Sun River below Willow Creek,
near Augusta | 06081500
06082200 | 1906-25
1968-75 | | 58 | Smith Creek near Augusta | 06082500 | 1906-13 | | 59
60 | Elk Creek near Augusta
Sun River at Simms | 06084500
06085800 | 1906-25
1966-79 | | 61 | Muddy Creek near Vaughn | 06088300 | 1968-86 | | 62 | Muddy Creek at Vaughn | 06088500 | 1935-68;1971-86 | | 63
64 | Missouri River near Great Falls
Belt Creek near Monarch | 06090300
06090500 | 1957-86
1951-83 | | 65 | Missouri River at Fort Benton | 06090800 | 1906-86 | | 66 | Two Medicine River near Browning | 06092000 | 1907-24;1951-77 | | 67
68 | Badger Creek near Browning Badger Creek below Four Horns Canal, near Browning | 06092500
06093200 | 1951-73
1974-86 | | 69 | Badger Creek near Family | 06093500 | 1907-25 | | 70 | Birch Creek at Swift Dam, near
Valier | 06094500 | 1913-29 | | 71
72 | Birch Creek near Valier
Cut Bank Creek at Cut Bank | 06098100
06099000 | 1977-84
1906-20;1923-24;1952-74;1978-79;
1982-86 | | 73 | Marias River near Shelby | 06099500 | 1906-08;1911-22;1924-86 | | 74 | Teton River near Strabane | 06103000 | 1908-25 | | 75 | Spring Creek near Choteau | 06104000 | 1917-20 | | 76 | Deep Creek near Choteau | 06106000 | 1911-25 | | 77 | Teton River near Dutton | 06108000 | 1954-86 | | 78
79 | Missouri River at Virgelle
Middle Fork Judith River near
Utica | 06109500
06109780 | 1935-86
1972-80 | | 80 | South Fork Judith River near
Utica | 06109800 | 1958-79 | | 81 | Judith River near Utica | 06111000 | 1920-76 | | 82
83 | Ross Fork near Hobson
Big Spring Creek near Lewistown | 06111000
06111500 | 1946-62
1932-57 | | 84 | Cottonwood Creek near Moore | 06112100 | 1957-63 | | 85 | Judith River near Winifred | 06113500 | 1929-32 | | 86 | Wolf Creek near Stanford | 06114500 | 1950-62 | | 87 | Missouri River near Landusky | 06115200 | 1934-86 | | 88
99 | North Fork Musselshell River
near Delpine
South Fork Musselshell River | 06115500
06118500 | 1940-80
1942-80 | | | above Martinsdale | | | | 104 | Big Elk Creek at Twodot | 06120000 | 1953-56 | | 107 | Musselshell River at Harlowton | 06120500 | 1907-86 | | 109
110 | American Fork near Harlowton
Lebo Creek near Harlowton | 06121000
06121500 | 1907-14;1924-32
1907-14:1924-32 | | 111 | American Fork below Lebo Creek, | 06122000 | 1946-67 | | 115 | near Harlowton
Musselshell River near Ryegate | 06123500 | 1946-80 | | | , 5 | | | | 116
117 | Roberts Creek at Hedgesville
Careless Creek at Wallum | 06125000
06125500 | 1920-23
1934-42 | | 121 | Big Coulee near Lavina | 06125700 | 1957-72 | | 128 | Halfbreed Creek near Klein | 06126470 | 1978-86 | | 129 | Musselshell River near Roundup | 06126500 | 1946-86 | | 133 | Musselshell River at Musselshell | 06127500 | 1928-32;1945-80;1983-86 | | 141
142 | Flatwillow Creek near Flatwillow
Box Elder Creek near Winnett | 06127900
06129000 | 1911-32;1934-56
1930-38;1959-72 | | 143 | McDonald Creek at Winnett | 06129500 | 1930-36;1939-72 | | 145 | Musselshell River at Mosby | 06130500 | 1929-32;1934-86 | Table 3.--Streamflow-gaging stations used for record-extension analysis of the Plains Region--Continued | Site
No. | | Streamflow-
gaging
station No. | Period of record (since water year 1906) | |---------------------------------|---|--|---| | 146
147
148
149
150 | Big Dry Creek near Van Norman
Timber Creek near Van Norman
Nelson Creek near Van Norman
Missouri River below Fort Peck Dam
Boxelder Creek near Rocky Boy | 06131000
06131120
06131200
06132000
06137570 | 1940-47;1949-86
1982-85
1976-85
1934-86
1976-86 | | 151
152
153
154
155 | Peoples Creek near Hays
Little Peoples Creek near Hays
Willow Coulee near Dodson
Peoples Creek near Dodson
Little Warm Creek at reservation
boundary, near Zortman | 06154400
06154410
06154490
06154500
06164615 | 1967-86
1972-86
1983-86
1918-22;1951-74;1982-86
1983-86 | | 156 | Rock Creek below McEachern Creek, | 06170050 | 1983-86 | | 157
158
159
160 | near international boundary
Milk River at Nashua
Prairie Elk Creek near Oswego
Wolf Creek near Wolf Point
Missouri River near Wolf Point | 06174500
06175540
06176500
06177000 | 1940-86
1976-85
1908-14;1950-53;1982-86
1929-86 | | 161
162
163
164
165 | Redwater River at Circle
Redwater River near Richey
Redwater River near Vida
Poplar River near Poplar
Big Muddy Creek near Antelope | 06177500
06177650
06177825
06181000
06183450 | 1929-72;1974-86
1982-85
1976-85
1908-25;1947-69;1975-79;1982-86
1979-86 | | 166
167
168 | Big Muddy Creek near Culbertson
Missouri River near Culbertson
Tower Creek at Tower Falls,
Yellowstone National Park | 06185110
06185500
06187500 | 1982-86
1941-52;1958-86
1922-43 | | 169
170 | Big Creek near Emigrant
Shields River near Wilsall | 06191800
06193000 | 1973-80;1983-85
1935-57 | | 171
172
173
174
175 | Shields River near Clyde Park
Brackett Creek near Clyde Park
Sweet Grass Creek above Melville
Pryor Creek near Huntley
Owl Creek near Lodge Grass | 06193500
06194000
06200500
06216900
06291000 |
1921-23;1929-67
1921-23;1934-57
1913-25;1937-69
1979-86
1939-45;1980-86 | | 176 | Rosebud Creek at reservation | 06295113 | 1980-86 | | 177
178 | boundary, near Kirby
Rosebud Creek near Colstrip
Rosebud Creek at mouth, near
Rosebud | 06295250
06296003 | 1975-86
1975-86 | | 179
180 | Squirrel Creek near Decker
Otter Creek at Ashland | 06306100
06307740 | 1975-85
1973-85 | | 181
182
183
184
185 | Pumpkin Creek near Miles City
Yellowstone River at Miles City
Powder River at Moorhead
Mizpah Creek near Mizpah
O'Fallon Creek near Ismay | 06308400
06309000
06324500
06326300
06326600 | 1973-85
1922-23;1928-86
1929-72;1975-86
1975-86
1977-86 | | 186
187 | Clear Creek near Lindsay
Lower Sevenmile Creek near
Bloomfield | 06326952
06328200 | 1982-85
1982-85 | | 188 | Little Blackfoot River near
Garrison | 12324590 | 1972-86 | | 189
190 | Boulder Creek at Maxville
Middle Fork Rock Creek near
Philipsburg | 12330000
12332000 | 1939-86
1938-86 | | 191
192 | Blackfoot River near Helmville
Nevada Creek above reservoir,
near Helmville | 12335000
12335500 | 1941-54
1940-86 | | 193 | East Fork Bitterroot River near Conner | 12343400 | 1956-73 | | 194
195 | Skalkaho Creek near Hamilton
Skyland Creek near Essex | 12346500
12356000 | 1949-53;1957-80
1946-52 | | 196
197 | Twin Creek near Hungry Horse
Lower Twin Creek near Hungry
Horse | 12360000
12360500 | 1948-56;1965-67
1948-56 | Table 4.--Results of basin-characteristics regression analysis for the Mountain Region $[R^2$, coefficient of determination; Q, mean monthly streamflow for specified month, in cubic feet per second; A, drainage area, in square miles; P, mean annual precipitation, in inches] | Month | Stream-
flow
charac-
teristic | | Equ | uation | | \mathbb{R}^2 | Stand-
ard
error
(loga-
rithm,
base
10) | Stand-
ard
error
(per-
cent) | |-----------|--|---|---------|---------------------|-------------------|----------------|---|--| | October | Q | = | 0.00234 | A0.935 | P1.51 | 0.80 | 0.21 | 50 | | November | Q | = | 0.00145 | A ⁰ .972 | P1.56 | .79 | .22 | 55 | | December | Q | = | 0.00069 | A ⁰ .974 | P1.73 | •77 | •24 | 60 | | January | Q | = | 0.00079 | A ^{0.980} | P1.63 | •73 | •26 | 67 | | February | Q | = | 0.00123 | A ^{0.990} | _P 1.50 | •72 | •27 | 70 | | March | Q | = | 0.00316 | A ^{0.992} | P1.28 | •71 | •28 | 71 | | April | Q | = | 0.00631 | A ⁰ .905 | P1.49 | •71 | •26 | 64 | | May | Q | = | 0.00457 | A0.854 | P2.02 | •84 | •18 | 43 | | June | Q | = | 0.00324 | A0.906 | P2.08 | •89 | •15 | 35 | | July | Q | = | 0.00155 | A0.936 | _P 1.94 | •85 | .18 | 43 | | August | Q | = | 0.00282 | A0.876 | P1.60 | .70 | •26 | 65 | | September | Q | = | 0.00316 | A ⁰ .912 | P1.45 | •73 | •25 | 62 | Table 5.--Results of basin-characteristics regression analysis for the Plains Region $[R^2,$ coefficient of determination; Q, mean monthly streamflow for specified month, in cubic feet per second; A, drainage area, in square miles. --, no data] | Month | Stream-
flow
charac-
teristi | - | Equation | R ² | Stand-
ard
error
(loga-
rithm,
base
10) | Stand-
ard
error
(per-
cent) | |-----------|---------------------------------------|---|---------------------------------|----------------|---|--| | October | | | No meaningful equation derived. | | | | | November | | | No meaningful equation derived. | | | | | December | | | No meaningful equation derived. | | | | | January | | | No meaningful equation derived. | | | | | February | (Q+1) | = | 0.6622 A ^{0.46} | 0.45 | 0.36 | 98 | | March | (Q+1) | = | 0.5420 A ^{0.64} | •50 | •44 | 134 | | April | (Q+1) | = | 0.9954 A ^{0.47} | •35 | •44 | 135 | | May | (Q+1) | = | 1.2503 A ^{0.46} | •33 | •46 | 142 | | June | (Q+1) | = | 1.0839 A ^{0.53} | •37 | •48 | 157 | | July | (Q+1) | = | 0.9616 A ^{0.40} | •33 | •39 | 112 | | August | | | No meaningful equation derived. | | | | | September | | | No meaningful equation derived. | | | | Table 6.--Results of channel-width regression analysis for the Mountain Region $[R^2, \text{ coefficient of determination; Q, mean monthly streamflow for specified month, in cubic feet per second; W_{AC}, active-channel width, in feet]}$ | Month | Stream-
flow
charac-
teristic | | Equation | R ² | Stand-
ard
error
(loga-
rithm,
base
10) | Stand-
ard
error
(per-
cent) | |-----------|--|---|--|----------------|---|--| | October | Q | = | 0.0525 W _{AC} 1.78 | 0.75 | 0.23 | 57 | | November | Q | = | 0.0380 W _{AC} 1.83 | •72 | •25 | 64 | | December | Q | = | 0.0309 W _{AC} 1.84 | .69 | •28 | 71 | | January | Q | = | 0.0251 W _{AC} 1.85 | •67 | •29 | 75 | | February | Q | = | 0.0245 W _{AC} 1.87 | •67 | •29 | 76 | | March | Q | = | 0.0355 W _{AC} 1.82 | •64 | •31 | 81 | | April | Q | = | 0.1102 W _{AC} 1.79 | •71 | •25 | 63 | | May | Q | = | 0.2985 W _{AC} 1.84 | .87 | •16 | 38 | | June | Q | = | 0.2979 W _{AC} 1.88 | .86 | •17 | 40 | | July | Q | = | 0.1127 W _{AC} 1.85 | •79 | •21 | 52 | | August | Q | = | 0.0933 W _{AC} 1.67 | •64 | •28 | 72 | | September | e Q | = | 0.0631 W _{AC} ^{1.72} | •67 | •27 | 68 | Table 7.--Results of channel-width regression analysis for the Plains Region $[\mathbb{R}^2$, coefficient of determination; Q, mean monthly streamflow for specified month, in cubic feet per second; W_{AC} , active-channel width, in feet] | Month | Stream-
flow
charac-
teristic | | Equation | \mathbb{R}^2 | Stand-
ard
error
(loga-
rithm,
base
10) | Stand-
ard
error
(per-
cent) | |-----------|--|---|--|----------------|---|--| | October | (Q+1) | = | 0.9397 W _{AC} 0.47 | 0.23 | 0.33 | 89 | | November | (Q+1) | = | 0.9141 W _{AC} 0.50 | •24 | •34 | 92 | | December | (Q+1) | = | 1.0233 W _{AC} 0.40 | •17 | •34 | 93 | | January | (Q+1) | = | 0.9661 W _{AC} 0.43 | •21 | •31 | 82 | | February | (Q+1) | = | 0.4819 W _{AC} 1.02 | •66 | •28 | 72 | | March | (Q+1) | = | 0.4150 W _{AC} 1.35 | •67 | •36 | 98 | | April | (Q+1) | = | 0.5649 W _{AC} 1.13 | •62 | •34 | 92 | | May | (Q+1) | = | 0.5875 W _{AC} 1.20 | •67 | •32 | 86 | | June | (Q+1) | = | 0.4677 W _{AC} 1.36 | •73 | •32 | 84 | | July | (Q+1) | = | 0.5035 W _{AC} 1.03 | •67 | •28 | 71 | | August | (Q+1) | = | 0.7998 W _{AC} 0.57 | .37 | •29 | 74 | | September | (Q+1) | = | 0.8551 W _{AC} ^{0.55} | •27 | .35 | 94 | Table 8.--Streamflow-gaging stations used in test of concurrent-measurement method in the Plains Region | Stream used as pseudo-ungaged site | | | | Stream used as correlating gaged site | | | | | | | |------------------------------------|---|----------------|-------------|---|----------------|----------------------------|--|--|--|--| | Site
No. | Stream name | Station
No. | Site
No. | Stream name | Station
No. | Water
year of
record | | | | | | 104 | Big Elk Creek at Twodot | 06120000 | 111 | American Fork below Lebo
Creek, near Harlowton | 06122000 | 1955 | | | | | | 110 | Lebo Creek near Harlowton | 06121500 | 109 | American Fork near Harlowton | 06121000 | 1931 | | | | | | 111 | American Fork below Lebo
Creek, near Harlowton | 06122000 | 88 | North Fork Musselshell River
near Delpine | 06115500 | 1947 | | | | | | 116 | Roberts Creek at
Hedgesville | 06125000 | 107 | Musselshell River at Harlowton | 06120500 | 1921 | | | | | | 117 | Careless Creek at Wallum | 06125500 | 142 | Box Elder Creek near Winnett | 06129000 | 1937 | | | | | | 121 | Big Coulee near Lavina | 06125700 | 111 | American Fork below Lebo Creek,
near Harlowton | 06122000 | 1959 | | | | | | 128 | Halfbreed Creek near Klein | 06126470 | 152 | Little Peoples Creek near Hays | 06154410 | 1985 | | | | | | 142 | Box Elder Creek near Winnett | 06129000 | 143 | McDonald Creek at Winnett | 06129500 | 1938 | | | | | | 143 | McDonald Creek at Winnett | 06129500 | 146 | Big Dry Creek near Van Norman | 06131000 | 1940 | | | | | | 153 | Willow Coulee near Dodson | 06154490 | 152 | Little Peoples Creek near Hays | 06154410 | 1983 | | | | | | 154 | Peoples Creek near Dodson | 06154500 | 152 | Little Peoples Creek near Hays | 06154410 | 1985 | | | | | | 155 | Little Warm Creek at
reservation boundary,
near Zortman | 06164615 | 151 | Peoples Creek near Hays | 06154400 | 1985 | | | | | | 158 | Prairie Elk Creek near Oswego | 06175540 | 161 | Redwater River at Circle | 06177500 | 1979 | | | | | | 159 | Wolf Creek near Wolf Point | 06176500 | 161 | Redwater River at Circle | 06177500 | 1952 | | | | | | 165 | Big Muddy Creek near
Antelope | 06183450 | 164 | Poplar River near Poplar | 06181000 | 1982 | | | | | | 179 | Squirrel Creek near Decker | 06306100 | 176 | Rosebud Creek at reservation boundary, near Kirby | 06295113 | 1981 | | | | | | 180 | Otter Creek at Ashland | 06307740 | 181 | Pumpkin Creek near Miles City | 06308400 | 1977 | | | | | | 185 | O'Fallon Creek near Ismay | 06326600 | 184 | Mizpah Creek near Mizpah | 06326300 | 1979 | | | | | | 186 | Clear Creek near Lindsay | 06326952 | 184 | Mizpah Creek near Mizpah | 06326300 | 1982 | | | | | | 187 | Lower Sevenmile Creek near
Bloomfield | 06328200 | 184 | Mizpah Creek near Mizpah | 06326300 | 1984 | | | |
| | | | | | | | | | | | | Table 9.--Standard errors for three methods of estimation in the Mountain Region ### Standard error, in specified units, for specified method | | Concurrent- | -measurement | Basin-chara | acteristics | Channel-width | | | |-----------|--------------|--------------|--------------|-------------|---------------|---------|--| | Month | Log
units | Percent | Log
units | Percent | Log
units | Percent | | | October | 0.18 | 43 | 0.21 | 50 | 0.23 | 57 | | | November | •17 | 41 | •22 | 55 | •25 | 64 | | | December | •18 | 43 | •24 | 60 | •28 | 71 | | | January | •21 | 51 | •26 | 67 | .29 | 75 | | | February | •15 | 36 | •27 | 70 | .29 | 76 | | | March | •16 | 38 | •28 | 71 | •31 | 81 | | | April | •26 | 66 | •26 | 64 | •25 | 63 | | | May | .18 | 43 | •18 | 43 | .16 | 38 | | | June | •20 | 49 | •15 | 35 | •17 | 40 | | | July | •17 | 41 | •18 | 43 | •21 | 52 | | | August | •24 | 60 | •26 | 65 | •28 | 72 | | | September | •23 | 57 | •25 | 62 | •27 | 68 | | Table 10.--Standard errors for three methods of estimation in the Plains Region [--, no data] | Standard | error. | in | specified | units. | for | specified | method | |--------------|--------|----|-----------|----------|-------|-----------|----------| | o c an aar a | CITOL | | SPECTIFE | GIIT CO. | T O T | BUCCTITCU | mc ciioa | | | Concurrent | -measurement | Basin-chara | cteristics | Channel-width | | | | |-----------|--------------|--------------|--------------|------------|---------------|---------|--|--| | Month | Log
units | Percent | Log
units | Percent | Log
units | Percent | | | | October | 0.61 | 249 | | *** | 0.33 | 89 | | | | November | •52 | 181 | | | •34 | 92 | | | | December | •48 | 154 | | **** | •34 | 93 | | | | January | •50 | 165 | | | •31 | 82 | | | | February | •61 | 247 | 0.36 | 98 | •28 | 72 | | | | March | •68 | 321 | •44 | 134 | •36 | 98 | | | | April | •39 | 109 | •44 | 135 | •34 | 92 | | | | May | •47 | 148 | •46 | 142 | •32 | 86 | | | | June | •55 | 196 | •48 | 157 | •32 | 84 | | | | July | •49 | 161 | •39 | 112 | •28 | 71 | | | | August | .39 | 113 | | **** | •29 | 74 | | | | September | •53 | 185 | | | •35 | 94 | | | Table 11.--Ungaged estimation sites with corresponding correlating gaged sites for the Mountain and Plains Regions | | Ungaged site | Correlating gaged site | | | | | | | |----------------------------|---|-------------------------------|---|--|--|--|--|--| | Site
No. | Name | Site
No. | Name | Station
No. | | | | | | 89
90
91
92
93 | Checkerboard Creek at Checkerboard
Sourdough Creek at mouth, near Checkerboard
Trail Creek at mouth, near Checkerboard
Flagstaff Creek at mouth, near Checkerboard
Spring Creek at mouth, near Checkerboard | 88
117
109
109
99 | North Fork Musselshell River near Delpine
Careless Creek at Wallum
American Fork near Harlowton
American Fork near Harlowton
South Fork Musselshell River above
Martinsdale | 06115500
06125500
06121000
06121000
06118500 | | | | | | 94
95
96
97
98 | Whetstone Creek at mouth, near Checkerboard
Cooper Creek at mouth, near Checkerboard
Mud Creek at mouth, near Martinsdale
Alabaugh Creek at mouth, near Lennep
Cottonwood Creek at mouth, near Martinsdale | 88
88
117
50
99 | North Fork Musselshell River near Delpine
North Fork Musselshell River near Delpine
Careless Creek at Wallum
Sheep Creek near White Sulphur Springs
South Fork Musselshell River above
Martinsdale | | | | | | | 100 | Daisy Dean Creek at mouth, near Twodot | 117 | Careless Creek at Wallum | 06125500 | | | | | | 101 | Willis Coulee at mouth, near Twodot | 143 | McDonald Creek at Winnett | 06129500 | | | | | | 102 | Miller Creek near mouth, near Twodot | 121 | Big Coulee near Lavina | 06125700 | | | | | | 103 | Haymaker Creek at mouth, at Twodot | 121 | Big Coulee near Lavina | 06125700 | | | | | | 105 | Mexican John Creek at mouth, near Harlowton | 88 | North Fork Musselshell River near Delpine | e 06115500 | | | | | | 106 | Hopley Creek near mouth, near Harlowton | 121 | Big Coulee near Lavina | 06125700 | | | | | | 108 | Antelope Creek above Alkali Creek, near Harlowton | 88 | North Fork Musselshell River near Delpine | 06115500 | | | | | | 112 | Timber Creek at mouth, near Harlowton | 143 | McDonald Creek at Winnett | 06129500 | | | | | | 113 | Mud Creek near mouth, near Shawmut | 121 | Big Coulee near Lavina | 06125700 | | | | | | 114 | Fish Creek near mouth, near Ryegate | 121 | Big Coulee near Lavina | 06125700 | | | | | | | Careless Creek at mouth, near Ryegate | 117 | Careless Creek at Wallum | 06125500 | | | | | | | Ninemile Coulee at mouth, near Cushman | 104 | Big Elk Creek at Twodot | 06120000 | | | | | | | Fivemile Creek at mouth, near Lavina | 121 | Big Coulee near Lavina | 06125700 | | | | | | | Painted Robe Creek at mouth, near Lavina | 88 | North Fork Musselshell River near Delpind | 06115500 | | | | | | | Dean Creek near mouth, near Lavina | 121 | Big Coulee near Lavina | 06125700 | | | | | | 124 | Stanley Creek at mouth, near Roundup | 143 | McDonald Creek at Winnett | 06129500 | | | | | | 125 | Goulding Creek at mouth, near Roundup | 143 | McDonald Creek at Winnett | 06129500 | | | | | | 126 | Currant Creek near Roundup | 88 | North Fork Musselshell River near Delpine | 06115500 | | | | | | 127 | Horsethief Creek at mouth, near Roundup | 121 | Big Coulee near Lavina | 06125700 | | | | | | 130 | Willow Creek at mouth, near Roundup | 143 | McDonald Creek at Winnett | 06129500 | | | | | | 131 | Parrot Creek at mouth, near Roundup | 121 | Big Coulee near Lavina | 06125700 | | | | | | 132 | Fattig Creek near mouth, near Delphia | 121 | Big Coulee near Lavina | 06125700 | | | | | | 134 | Hawk Creek at Musselshell | 121 | Big Coulee near Lavina | 06125700 | | | | | | 135 | McLean Coulee at mouth, near Musselshell | 121 | Big Coulee near Lavina | 06125700 | | | | | | 136 | Carpenter Creek at mouth, near Musselshell | 121 | Big Coulee near Lavina | 06125700 | | | | | | 137 | Lost Horse Creek near mouth, near Melstone | 121 | Box Elder Creek near Winnett | 06125700 | | | | | | 138 | Home Creek near mouth, near Melstone | 121 | | 06125700 | | | | | | 139 | Rattlesnake Creek at mouth, near Mosby | 143 | | 06129500 | | | | | | 140 | North Willow Creek at mouth, near Mosby | 142 | | 06129000 | | | | | | 144 | Flatwillow Creek at mouth, near Mosby | 143 | | 06129500 | | | | | Table 12.--Weights and standard errors for various combinations of methods of estimation for the Mountain Region [Log, logarithm, base 10; pct, percent] | | | | Weigh | ts and | standar | d error | s for s | pecifie | d month | | | | |---|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|---------------------| | Combinations of methods | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | | Basin-characteristics method
Channel-width method
Concurrent-measurement method
Weighted standard error (log)
Weighted standard error (pct) | 0.153
.299
.548
.12 | 0.241
.147
.612
.12 | 0.234
.155
.611
.13 | 0.239
.178
.583
.15 | 0.125
.172
.703
.11 | 0.256
.000
.744
.14 | 0.295
.315
.391
.22 | 0.235
.472
.293
.13 | 0.383
.323
.294
.11 | 0.187
.269
.544
.13 | 0.000
.399
.601
.19 | | | Basin-characteristics method
Channel-width method
Weighted standard error (log)
Weighted standard error (pct) | .666
.334
.20 | .751
.249
.22 | .810
.190
.24 | .726
.274
.26 | | .681
.319
.27 | .476
.524
.24 | .397
.603
.14 | .598
.402
.13 | .695
.305
.17 | .763
.237
.25 | .683
.317
.24 | | Concurrent-measurement method
Basin-characteristics method
Weighted standard error (log)
Weighted standard error (pct) | .555
.445
.13 | .621
.379
.13 | .613
.387
.13 | .590
.410
.15 | | .744
.256
.14 | .491
.509
.23 | .463
.537
.15 | .337
.663
.13 | .559
.441
.14 | .573
.427
.21 | .552
.448
.19 | | Concurrent-measurement method
Channel-width method
Weighted standard error (log)
Weighted standard error (pct) | .591
.409
.12 | .668
.332
.13 | .659
.341
.13 | .623
.377
.15 | .729
.271
.11 | .814
.186
.15 | .475
.525
.23 | .389
.611
.14 | .408
.592
.13 | .628
.372
.13 | .601
.399
.19 | .576
.424
.17 | Table 13.--Weights and standard errors for various combinations of methods of estimation for the Plains Region [Log, logarithm, base 10; pct, percent] | | | | Weigh | ts and | standar | d error | s for s | pecifie | d month | | | | |---|------------------------------|------------------------------|------------------------------|------------------------------|-------------------------------
------------------------------|------------------------------|------------------------------|------------------------------|-----------------------|------------------------------|-------------------------------| | Combinations of methods | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | | Basin-characteristics method
Channel-width method
Concurrent-measurement method
Weighted standard error (log)
Weighted standard error (pct) | 0.000
.824
.176
.31 | 0.000
.744
.256
.31 | 0.000
.680
.320
.29 | 0.000
.794
.206
.29 | 0.000
1.000
.000
.28 | 0.090
.858
.052
.35 | 0.000
.581
.419
.28 | 0.000
.712
.288
.29 | 0.000
.856
.144
.31 | .972 | 0.000
.832
.168
.28 | 0.000
1.000
.000
.35 | | Basin-characteristics method
Channel-width method
Weighted standard error (log)
Weighted standard error (pct) | .000
1.000
.33 | 1.000
1.000
.34 | 1.000
1.000
.34 | 1.000
1.000
.31 | 1.000
1.000
.28 | .102
.898
.36 | 1.000
1.000
.34 | 1.000
1.000
.32 | 1.000
32 | 1.000
1.000
.28 | 1.000
1.000
.29 | 1.000
1.000
.35 | | Concurrent-measurement method
Basin-characteristics method
Weighted standard error (log)
Weighted standard error (pct) | 1.000
.000
.37 | 1.000
.000
.38 | 1.000
.000
.37 | 1.000
.000
.34 | .962
.36 | .186
.814
.42 | .586
.414
.32 | .517
.37 | .580
.41 | | 1.000
.000
.31 | 1.000
.000
.39 | | Concurrent-measurement method
Channel-width method
Weighted standard error (log)
Weighted standard error (pct) | .176
.824
.31 | .256
.744
.31 | .320
.680
.29 | .206
.794
.29 | 1.000
1.000
.28 | .056
.944
.36 | .419
.581
.28 | .288
.712
.29 | .144
.856
.31 | .028
.972
.28 | .168
.832
.28 | 1.000
1.000
.35 |